from methylene chloride-ether. Pure epidihydroeburnamenine was thus obtained in two crops of colorless crystals $(1.75 \mathrm{~g}, 62 \%)$ with $\mathrm{mp} 183-184^{\circ}$: ir (Nujol) $1625 \mathrm{~cm}^{-1}$; nmr (CDCl_{3}) 0.76 (unsym t, 3 H), ${ }^{29} 0.9-3.3(\mathrm{~m}, 15 \mathrm{H}), 3.5-4.3(\mathrm{~m}, 2 \mathrm{H})$, and $7.0-7.6$
$(\mathrm{m}, 4 \mathrm{H})$; mass spectrum $m / e 279(100 \%)$ and $280(82 \%$, M^{+}).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2}: \mathrm{C}, 81.38 ; \mathrm{H}, 8.63 ; \mathrm{N}, 9.99$. Found: C, 81.21; H, 8.37; N, 9.89 .

4-Alkyl-5-sulfonylimino-1,2,3,4-thiatriazolines. Interesting Starting Materials for the Synthesis of Sulfonylcarbodiimides and Novel Heterocycles

Gerrit L'abbé,* Emiel Van Loock, Rudolf Albert, Suzanne Toppet, Gabriel Verhelst, and Georges Smets
Contribution from the Department of Chemistry, University of Louvain, Celestijnenlaan 200F, B-3030 Heverlee, Belgium. Received January 12, 1974

Abstract

Alkyl azides react with sulfonyl isothiocyanates at room temperature to give 4 -alkyl-5-sulfonylimino-$1,2,3,4$-thiatriazolines (4) in reasonable good yields ($49-76 \%$). These heterocyclic compounds are smoothly thermolyzed at $45-80^{\circ}$ to sulfonylcarbodiimides 5 . When heated in the presence of enamines, 4 -aminothiazolidines (e.g., 11-13) and/or thiazolines (e.g., 17 and 18) are obtained, the latter resulting from the 4 -aminothiazolidines by loss of amine. Ynamines and keto-stabilized phosphorus ylides also react with the thiatriazolines to give thiazolines (e.g., 20, 22-24), whereas vinyl ethers, vinyl acetates, and electron-poor olefins and acetylenes are unable to give addition products. Structure assignment of the new products was based on chemical evidence and spectroscopic study including ${ }^{13} \mathrm{C} n \mathrm{~nm}$ analysis. The mechanism of thiazolidine formation is discussed.

The behavior of isothiocyanates toward inorganic azides is well known. ${ }^{1}$ Thus, the reaction of hydrazoic acid with isothiocyanates furnishes 5-(substituted) amino 1,2,3,4-thiatriazoles (1) probably via unstable thiocarbamoyl azides. Sodium azide, on the contrary, reacts with isothiocyanates to give 1 -substituted-Δ^{2}-tetrazoline-5-thiones (2) which are also obtained in part by the base-catalyzed isomerization of $\mathbf{1}$ when $\mathrm{R}=$ aryl.

Recently, Dunn and Oldfield ${ }^{2}$ reported the reaction of tri- n-butyltin azide and triphenyltin azide with phenyl isothiocyanate to give the $\mathrm{C}=\mathrm{N}$ adducts 3 . These were converted to $2(\mathrm{R}=\mathrm{Ph})$ upon treatment with cold dilute HCl . Other organometallic azides also produced $\mathrm{C}=\mathrm{N}$ adducts. ${ }^{3}$

[^0]
$3, R=n-\mathrm{Bu}$ or Ph
No reactions of isothiocyanates with organic azides have thus far been reported, although reactions with other 1,3-dipoles are known: ${ }^{4}$ diazoalkanes, nitrile ylides, and azomethine ylides yield $\mathrm{C}=\mathrm{S}$ adducts, azomethine imines and nitrones give $\mathrm{C}=\mathrm{N}$ adducts and nitrile imines are capable to add onto the $\mathrm{C}=\mathrm{N}$ and/or $\mathrm{C}=\mathrm{S}$ bonds of isothiocyanates. In view of these results, addition of azides across the $\mathrm{C}=\mathrm{N}$ and/or $\mathrm{C}=\mathrm{S}$ bonds of isothiocyanates may formally be considered. We have now found that alkyl azides react readily with sulfonyl isothiocyanates to give 4 -alkyl-5-sulfonyl-imino-1,2,3,4-thiatriazolines (4) exclusively. ${ }^{5}$ Despite the large number of investigations carried out with the aromatic 1,2,3,4-thiatriazoles, ${ }^{6}$ 1,2,3,4-thiatriazolines have only been mentioned in a few reports. ${ }^{3,7}$

Results and Discussion

The reaction of n-butyl azide and benzyl azide with equimolar amounts of sulfonyl isothiocyanates at room temperature readily afforded 4 -alkyl-5-sulfonylimino-
(4) Review: E. Van Loock, Ind. Chim. Belg., in press.
(5) For a preliminary report on this topic, see E. Van Loock, J. M. Vandensavel, G. L'abbé, and G. Smets, J. Org. Chem., 38, 2916 (1973).
(6) Review: K. A. Jensen and C. Pedersen, Advan. Heterocycl. Chem., 3, 263 (1964).
(7) E. Lieber, E. Oftedahl, and C. N. R. Rao, J. Org. Chem., 28, 194 (1963); R. Neidlein and J. Tauber, Arch. Pharm. (Weinheim), 304, 687 (1971).

Table I. Synthesis of 4-Alkyl-5-sulfonylimino-1, 2,3,4-thiatriazolines (4)

Compd	R	X	Reaction time, $h^{a}{ }^{a}$	Yield, \%	Mp (recryst solvent), ${ }^{\circ} \mathrm{C}$	$\mathrm{C}=\mathrm{N}$	SO_{2}
4a	n-Bu	H	24	49	60-61 dec (ether)	1530	1310,1145
4b	n-Bu	Me	10	59	74-75 dec (ether)	1530	1285, 1140
4 c	$n-\mathrm{Bu}$	Cl	48	76	$102-104 \mathrm{dec}\left(\mathrm{CCl}_{4}-\mathrm{CHCl}_{3}\right)$	1510	1320, 1140
4d	PhCH_{2}	H	24	b	Oil	1525	1320, 1145
4 e	PhCH_{2}	Me	20	70	101-103 dec (acetone)	1535	1305, 1140
4f	PhCH_{2}	Cl	7	62	116-118 dec (acetone)	1515	1320, 1140

${ }^{a}$ All experiments were carried out at room temperature with equimolar amounts of each reagent in CCl_{4} (except for $\mathbf{4 c}$ which was prepared in the absence of solvent). ${ }^{b}$ This compound decomposed slowly at room temperature.

1,2,3,4-thiatriazolines (4) (see Table I). Structure assignment was based on spectral analyses and thermal decomposition. In particular, the ir spectra showed broad and strong absorptions at $1510-1535 \mathrm{~cm}^{-1}$ which are assigned to the $\mathrm{C}=\mathrm{N}$ bonds. ${ }^{8}$ The mass spectra exhibited fragments corresponding to $\mathrm{M}^{+}+\mathrm{N}_{2}$ and M.+ $-\mathrm{N}_{2}-\mathrm{S}$ in addition to very small molecular ion peaks.

Solutions of $\mathbf{4 a - f}$ in inert solvents (dry toluene, CCl_{4}, acetone, etc.) at $45-80^{\circ}$ evolve nitrogen with formation of sulfur and sulfonylcarbodiimides (5). The pres-

$$
4 \xrightarrow{\Delta} \mathrm{RN}=\mathrm{C}=\mathrm{NSO}_{\mathbf{5}} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}(p)+\mathrm{S}+\mathrm{N}_{2}
$$

ence of the latter was inferred from their ir absorption bands ${ }^{9}$ at $2160 \mathrm{~cm}^{-1}$ and from trapping experiments. ${ }^{10}$ Thus, when 4 e was first decomposed in CCl_{4} at 80° and then treated with oxalyl chloride at room temperature, 1-benzyl-2,2-dichloro-3-tolylsulfonylimidazolidine-4,5dione (6) was obtained in 57% yield. Further hydrolysis of 6 with water yielded the parabanic acid derivative 7 in 90% yield. This product was characterized by spectral analysis (see Experimental Section) and by comparison with an authentic sample prepared from N-benzyl- N^{\prime}-tolylsulfonylurea (8) and oxalyl chloride. Compound 8 was obtained when 4 e was thermolyzed in a mixture of acetone-water at 65°.

4-Alkyl-5-sulfonylimino-1,2,3,4-thiatriazolines (4) also decompose under the influence of bases at room temperature. Thus, O-methyl- N-benzyl- N^{\prime}-tolylsulfonylisourea (9) was obtained in 79% yield when 4 e was treated with sodium methoxide in methanol solution. Its structure was ascertained by ir (NH at 3340 , $\mathrm{C}=\mathrm{N}$ at $1610 \mathrm{~cm}^{-1}$), nmr (benzyl protons at $\tau 5.6$, coupled with NH), and mass spectrum (M.+ at m / e 318). Similar treatment of $\mathbf{4 a}$ with sodium hydroxide in a mixture of methanol-water at room temperature
(8) J. Goerdeler and U. Krone, Chem. Ber., 102, 2273 (1969).
(9) R. Neidlein, W. Haussmann, and E. Heukelbach, Chem. Ber., 99, 1252 (1966); R. Neidlein and E. Heukelbach, Arch. Phairm. (Weinheim), 299, 944 (1966); H. Ulrich, B. Tucker, and A. A. R. Sayigh, Tetrahedron. 22, 1565 (1966).
(10) For reviews on carbodiimides, see H. G. Khorana, Chem. Rev., 53, 145 (1953); F. Kurzer and K. D. Zadeh, ibid., 67, 107 (1967).

furnished the corresponding O-methylisourea 10 in

61% yield (for structure analysis, see Experimental Section). From the reactions outlined above, it is evident that 4 -substituted- 5 -sulfonylimino-1,2,3,4-thiatriazolines (4) constitute excellent precursors for the synthesis of sulfonylcarbodiimides. The utility of this new synthetic method is based on the ready availability of 4 (which in most cases can be stored for indefinite time at room temperature), their facile and clean thermal decomposition in anhydrous solvents, and the fact that no protic substances are involved in the synthetic method-a feature not shared by other syntheses of sulfonylcarbodiimides. ${ }^{9,11}$ Thus, for most synthetic purposes, a thermolyzed solution of 4 in
(11) B. Anders and E. Kuihle, Angew. Chem.. 77, 430 (1965); Angew. Chem., Int. Ed. Engl., 4, 430 (1965).
acetone may be filtered (to remove sulfur) and then conveniently used without further purification.

4-Alkyl-5-sulfonylimino-1,2,3,4-thiatriazolines (4) are not only of interest as precursors for the synthesis of sulfonylcarbodiimides (5), but also as starting materials for the synthesis of other heterocyclic compounds such as thiazolidines and thiazolines. Thus, when 4-benzyl-5-tosylimino-1,2,3,4-thiatriazoline (4e) was decomposed in the presence of enamines, adducts 11-13

12, $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{Ph}(73 \%)$
13, $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}(55 \%)$
were obtained and characterized by spectral analyses. In particular, the ir absorption patterns in the region $1600-1400 \mathrm{~cm}^{-1}$ were similar to that of the precursor 4 e with typical broad and strong $\mathrm{C}=\mathrm{N}$ bands at 1515 $1530 \mathrm{~cm}^{-1}$. The indicated stereochemistry of 12 was established by the small C-4-C-5 hydrogen coupling constant ($J=2.5 \mathrm{~Hz}$) in the nmr spectrum. This means that the addition occurred in a stereospecific syn fashion. A point of particular importance is the regiochemistry of the adducts, since two modes of addition are in principle feasible. That the amine function occupies the 4 position in all the adducts was proven beyond doubt by ${ }^{13} \mathrm{C} \mathrm{nmr}$ analysis (see Table II). For compound 11, the ring methylene carbon

Table II. ${ }^{13} \mathrm{C}$ Chemical Shifts in ppm with Respect to TMS

Compd	C_{2}	C_{4}	C_{5}	Other shift values
11	167.6	88.1 (s)	30.5 (t)	Benzyl CH2 at 48.1
12	167.8	87.9 (d)	43.8 (d)	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ at 38.2
13	168	87.7 (d)	51.7 (s)	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ at $36-46$ (broad) $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ at 21.9 and 32 .

atom absorbed at $\delta 30.5$ comparable with the reported chemical shift of the α-methylene carbon atom in tetrahydrothiophene at $\delta 32.5 .{ }^{12}$ The regioisomer of 11, with the CH_{2} located next to the more electronegative N atom, would be expected to absorb around δ 47.1 which is the chemical shift of the α-carbon atom in tetrahydropyrrole. ${ }^{12}$ Table II also shows that the ab-

[^1]sorption values for the $\mathrm{C}-5$ atoms of $\mathbf{1 2}$ and $\mathbf{1 3}$ have shifted to lower field with respect to $\mathbf{1 1}$ by the introduction of the methyl and phenyl substituents. In compound 13 , for instance, the C-5 atom is substituted with two methyl groups and absorbed at $\delta 51.7$. This shift value is completely comparable with the C-5 carbon absorption of thiazolidine 14 which has been prepared by a different method ${ }^{13}$ (the absorption values of 14

are indicated on the structure). Note also that the C-4 carbon atom absorptions of 11-13 are situated at low field ($\delta 87-88$) due to the attachment of two electronegative N atoms.

In a few cases, the thiazolidines (e.g., 15 and 16) obtained from 4 e and morpholinoenamines underwent partially loss of morpholine under the reaction conditions to yield the corresponding thiazolines (e.g., 17 and 18) in addition to guanidine 19 . The latter com-

pound is believed to result from reaction of morpholine with the species $\mathbf{4 e}$ and 5 (formed as side product). For synthetic purposes, the reaction mixture is best treated with HCl at room temperature in order to convert the remaining thiazolidine (15 and 16) into thiazoline (17 and 18).

Ynamines as electron-rich olefins are also suitable reagents for 4 e , giving access to 2 -tosylimino-4-aminothiazolines such as 20.
Keto-stabilized phosphorus ylides constitute another class of electron-rich olefins. Indeed, they are known to exist essentially in the enolate structure $(\mathrm{C}=\mathrm{O}$ at $c a$.
(13) S. Toppet, P. Claes, and J. Hoogmartens, Org. Magn. Resonance, 6,48 (1974).
$4 \mathrm{e}+\mathrm{Me}-\mathrm{C} \equiv \mathrm{C}-\mathrm{NEt}_{2} \xrightarrow[-\mathrm{N}_{2}-\mathrm{S}]{ }$

$1530 \mathrm{~cm}^{-1}$) and have been shown to manifest a pronounced dipolarophilic activity. ${ }^{14}$ We have now found that they also react with 4 e to give thiazolines (e.g., 22-24): The reaction is assumed to give first a

22, $\mathrm{R}=\mathrm{Me}(60 \%)$
23, $\mathrm{R}=\mathrm{Ph}(95 \%)$
$24, R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}(\mathrm{p})(65 \%)$
cyclic betaine intermediate 21, followed by a Wittigtype elimination of OPPh_{3}. The structures of 22-24 were elucidated by spectral analysis (see Experimental Section) and further proven beyond any doubt by an independent synthesis starting from benzyl isothiocyanate and tosylamide. The thiourea 25 formed in this reaction was treated with bromoacetone and phenacyl bromide to give the cyclic products 22 and 23 , re-

spectively. Since compound $\mathbf{1 1}$ could also be transformed into $23(90 \%)$ under the influence of hydro-

[^2]chloric acid, the independent synthesis of $\mathbf{2 3}$ once more confirms the assigned structure of the enamine adducts.

In contrast to the electron-rich olefins discussed above, vinyl ethers, vinyl acetates, and electron-poor olefins (methyl acrylate, dimethyl acetylenedicarboxylate, etc.) refused to give cycloadducts. The carbodiimide formed from 4 e in these reactions was converted to 9 in ca. 60% yield upon addition of methanol.

Two mechanisms can be considered for the formation of the cycloadducts discussed above: (i) attack of the olefin onto 4 e with simultaneous loss of nitrogen via transition state 26, and (ii) the generation in situ of a 3 -sulfonyliminothiaziridine 27 or its ring-opened dipolar form 28 . Kinetic experiments showed that the

26

27

rate of decomposition of 4 e is not influenced by the presence of enamines in various concentrations (the first-order rate constant being $k_{1}=42 \times 10^{-5} \mathrm{sec}^{-1}$ in CCl_{4} at 60°. This result clearly indicates that path (i) is not operating, but that a discrete intermediate is formed by an unimolecular process. The most obvious structure of the intermediate is 27 and/or $28 .{ }^{15}$
(15) To our knowledge, thiaziridines have never bcen isolated, and reports on their occurrence as intermediates are rare. W. Borsche (Ber., 75,1312 (1942)) reported the formation of thiaziridinethione (i) as an intermediate in the AlCl_{3} catalyzed decomposition of phenyl azide in CS_{2} to give phenyl isothiocyanate (ii) and 4-phenyl-5-phenylimino-1,2,4-dithiazolidine-3-thione (iii).

iii, 6%

Loss of sulfur from these species would give the carbodiimide, whereas addition of olefins would yield the cycloadducts. However, this intermediate cannot add concertedly to olefins by the most general supra-supra fashion because it would involve a four-electron transition state. ${ }^{16}$ Since, on the other hand, a stepwise addition via 29 would hardly rationalize the stereospecificity observed during the formation of 12, we are left with a symmetry-allowed [${ }_{\pi} 2_{\mathrm{s}}+{ }_{\sigma} 2_{\mathrm{a}}$] path for 27 or a $\left[{ }_{\pi} 2_{5}+\right.$ π_{2}] path for 28 . This means that the thiaziridine 27 (or the 1,3-dipole 28) would participate in an antarafacial way as shown in 30. This unexpected, but very

interesting conclusion needs further substantiation. Experiments directed to gain more insight into the behavior of this new small ring system are in progress.

Experimental Section

All melting points were obtained on a Leitz apparatus and are uncorrected. Ir spectra were taken on a Perkin-Elmer 521 spectrometer. ${ }^{1} \mathrm{H}$ nmr spectra were recorded with a Varian A-60 or XL- 100 spectrometer using TMS as an internal reference. For ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra, the XL-100 apparatus was equipped with a device for pulsed Fourier transform operation. Mass spectra were obtained with an AEI MS-12 instrument operating at an ionizing potential of 70 eV . The sulfonyl isothiocyanates used in this work were prepared by the method of Hartke ${ }^{17}$ as follows.

$$
\begin{aligned}
p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH}_{2}+\mathrm{CS}_{2}+2 \mathrm{KOH} \xrightarrow[\mathrm{DMF}]{ } \\
p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{~N}=\mathrm{C}(\mathrm{SK})_{2} \xrightarrow[\text { ether }]{\mathrm{COCl}_{2}} \\
p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{~N}=\mathrm{C}=\mathrm{S}+\mathrm{COS}+2 \mathrm{KCl}
\end{aligned}
$$

General Procedure for the Synthesis of 4-Alkyl-5-sulfonylimino-1,2,3,4-thiatriazolines, Exemplified for 4e. Equimolar amounts (0.06 mol) of benzyl azide and tosyl isothiocyanate were allowed to react in $\mathrm{CCl}_{4}(30 \mathrm{ml})$ at room temperature. After complete reaction (20 hr), the precipitate was collected (70%) and crystallized from acetone: mp 101-103 ${ }^{\circ} \mathrm{dec}$; ir (KBr) $1535(\mathrm{C}=\mathrm{N}), 1305$, and $1140 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \tau 2.28(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.62(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.64(\mathrm{~s}, 5 \mathrm{H}$, phenyl), $4.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $7.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (\%) $346(0.2, \mathrm{M} \cdot+), 318\left(0.15, \mathrm{M} \cdot{ }^{+}-\mathrm{N}_{2}\right), 286\left(6, \mathrm{M} \cdot+-\mathrm{N}_{2}-\mathrm{S}\right), 270$ (4), 254 (1), 155 (32), 139 (18), 131 (26), 124 (3), 91 (100).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ (346): $\mathrm{C}, 52.02 ; \mathrm{H}, 4.04$; $\mathbf{N}, 16.18 ; \mathrm{O}, 9.24 ; \mathrm{S}, 18.49$. Found: $\mathrm{C}, 51.85 ; \mathrm{H}, 4.00 ; \mathrm{N}$, 16.20; O, 9.25; S, 18.35 .

The other thiatriazolines were prepared in a similar manner. In some cases (e.g., for 4a), the adduct did not precipitate directly from the reaction mixture. The solvent was then removed under reduced pressure and the residue was crystallized from the appropriate solvent (see Table I). The adducts were characterized by spectral and elemental analysis.

[^3]Thermolysis of 4 e and Reaction with Oxalyl Chloride. Compound $4 \mathrm{e}(0.01 \mathrm{~mol})$ was allowed to decompose in $\mathrm{dry}^{\mathrm{CCl}} 4$ (50 ml) at 80°. After 3 hr , gas evolution ceased and the ir spectrum showed a strong carbodiimide band at $2160 \mathrm{~cm}^{-1}$. Oxalyl chloride (0.01 mol) was then added and the reaction mixture was stirred at room temperature for 48 hr . Compound 6 precipitated in 57% yield: $\mathrm{mp} 147-149^{\circ}$; ir (KBr) 1790 and 1755 (with shoulder at 1770 , $\mathrm{C}=\mathrm{O}), 1400$ and $1200 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}-\mathrm{DMSO}-d_{6} 4: 1\right.$ ratio) $\tau 2.02$ (d, 2 H , ortho aromatic protons), $2.40-2.90(\mathrm{~m}, 7 \mathrm{H}$, aromatic protons), $5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $7.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. This compound (1.05 g) was dissolved in a mixture of acetone (25 ml) and water (5 ml) and then stirred at room temperature for 4 days. Evaporation of the solvent afforded a crude product (90%) which, on crystallization from toluene- CCl_{4}, gave pure 7 in 54% yield: $\mathrm{mp} 187-189^{\circ}$; ir (KBr) 1805, 1790 and $1760(\mathrm{C}=\mathrm{O}), 1410$ and 1200 $\mathrm{cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 1.97(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.50-2.80\left(\mathrm{~m}, 7 \mathrm{H}\right.$, aromatic protons), $5.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and 7.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); mass spectrum m / e (\%) 358 ($1.6, \mathrm{M} \cdot+$), 294 (0.7 , $\mathrm{M} \cdot+-\mathrm{SO}_{2}$), $266\left(0.7, \mathrm{M}+{ }^{+}-\mathrm{SO}_{2}-\mathrm{CO}\right), 203\left(37, \mathrm{M} \cdot+-\mathrm{CH}_{3}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$), 175 (9), 155 (15, $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}+$), 132 (7), 91 (100, $\mathrm{CH}_{3}-$ $\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$). Alternately, when $4 \mathrm{e}(1.73 \mathrm{~g})$ was decomposed in a mixture of acetone (50 ml) and water (5 ml) at 65° and the solvent removed after complete reaction, a residue was obtained which was treated with methanol (15 ml) to give compound 8 in 60% yield, mp $172-173^{\circ}(\mathrm{MeOH})$. To 1.52 g of this compound in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise with stirring and cooling 0.96 g of oxalyl chloride. The mixture was stirred at room temperature for 1 hr and then refluxed for 2 hr . Evaporation of the solvent furnished a crude product which was crystallized from toluene- CCl_{4} ($3: 1$ ratio) to give pure 7 in 51% yield.

Decomposition of $\mathbf{4}$ under Influence of Bases. Treatment of $\mathbf{4 e}$ (0.5 g) with a 1.5 M solution of MeONa in $\mathrm{MeOH}(5 \mathrm{ml})$ caused decomposition within 2 hr . The solvent was removed and the residue was treated with water (25 ml) to give pure 9 in 79% yield: $\mathrm{mp} 130^{\circ}(\mathrm{MeOH})$; ir $(\mathrm{KBr}) 3340(\mathrm{~N}-\mathrm{H}), 1610(\mathrm{C}=\mathrm{N}), 1280$, and $1130 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.22$ (d, 2 H , ortho aromatic protons), $2.6-2.9$ ($\mathrm{m}, 7 \mathrm{H}$, aromatic protons), $5.6\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 6.19 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), and 7.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); mass spectrum m / e (\%) 318 ($14, \mathrm{M}^{-+}$), $253\left(4, \mathrm{M}^{+}+\mathrm{SO}_{2} \mathrm{H}, \mathrm{m}^{*}\right.$ at 201.6), 196 (1.4, $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NCNH}^{+}+$), 163 ($68, \mathrm{M}^{+}+-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$, m* at 83.5), $155\left(4, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}{ }^{+}\right.$), 139 ($2, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}^{+}$), 131 (5 , Ph$\mathrm{CH}_{2} \mathrm{NCN}^{+}$), $106\left(8, \mathrm{PhCH}_{2} \mathrm{NH}^{+}\right), 91\left(100, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}^{+}\right.$and $\mathrm{C}_{6} \mathrm{H}_{5^{-}}$ $\mathrm{CH}_{2}{ }^{+}$).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (318): C, $60.38 ; \mathrm{H}, 5.66 ; \mathrm{N}$, $8.80 ;$ S, 10.06. Found: C, 60.50; H, 5.70; N, 8.75; S, 10.10.
Similarly, when a methanol solution (15 ml) of $4 \mathrm{a}(1.49 \mathrm{~g})$ was treated with a $5 M$ solution of $\mathrm{NaOH}(5 \mathrm{ml})$, decomposition occurred at room temperature within 15 min . After addition of water (100 ml) O-methyl- N-butyl- N^{\prime}-benzenesulfonylisourea (10) was isolated in 61% yield: $\mathrm{mp} 71-72^{\circ}(\mathrm{MeOH})$; ir (KBr) 3340 $(\mathrm{N}-\mathrm{H}), 1615(\mathrm{C}=\mathrm{N}), 1280$ and $1130 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau$ 2.0-2.7 (m, 5 H, Ph), 6.18 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 6.77 (q, $2 \mathrm{H}, \mathrm{CH}_{2}$), and 8.3-9.2 (m, 7 H, Bu); mass spectrum m/e (\%) $270\left(4, \mathrm{M}^{++}\right), 255$ $\left(8, \mathrm{M}^{+}+-\mathrm{CH}_{3}\right), 241\left(5, \mathrm{M} \cdot+-\mathrm{C}_{2} \mathrm{H}_{5}\right), 239\left(4, \mathrm{M}{ }^{+}-\mathrm{CH}_{3} \mathrm{O}, \mathrm{m}^{*}\right.$ at 211.5), 227 (11, M.+ - $\mathrm{C}_{3} \mathrm{H}_{7}$), 215 (11), 198 (8), 149 (17), 141 ($73, \mathrm{PhSO}_{2}^{+}$), 125 ($2, \mathrm{PhSO}^{+}$), 77 ($100, \mathrm{Ph}^{+}$).
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (270): C, $53.33 ; \mathrm{H}, 6.66 ; \mathrm{N}$, 10.37 ; $\mathrm{S}, 11.85$. Found: $\mathrm{C}, 53.40 ; \mathbf{H}, 6.90 ; \mathbf{N}, 10.35 ; \mathbf{S}, 11.80$.

Decomposition of 4 e in the Presence of Enamines. Compound $\mathbf{4 e}$ (0.01 mol) was allowed to decompose at 60° in the presence of an equimolar amount of enamine in dry $\mathrm{CCl}_{4}(50-75 \mathrm{ml})$. After complete reaction ($2-3 \mathrm{hr}$), the mixture was worked up as specified below.
2-Tosylimino-3-benzyl-4-phenyl-4-morpholinothiazolidine (11) was obtained in 67% by cooling of the reaction mixture after complete reaction (2 hr): $\mathrm{mp} 178-180^{\circ}(\mathrm{MeOH})$; ir (KBr) $1515(\mathrm{C}=\mathrm{N}$), 1155 , and $1320 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.24-3.58(\mathrm{~m}, 14 \mathrm{H}$, aromatic protons), 5.52 ($\mathrm{s}, 2 \mathrm{H}$, benzyl CH_{2}), 6.16-6.46 (m, 4 H , morpholino), $6.32\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ring CH_{2}), $7.33-7.80(\mathrm{~m}, 4 \mathrm{H}$, morpholino), and $7.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; mass spectrum m / e (\%) 507 (very small, M•+), $420(1, \mathrm{M} \cdot+$ - morpholine), 265 (3, m/e 420 - Tos), 221 (2, morpholino- $\mathrm{C}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{~S} \cdot+$), 189 (100).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}$ (507): C, $63.90 ; \mathrm{H}, 5.72 ; \mathrm{N}$, $8.28 ; \mathrm{S}, 12.62$. Found: $\mathrm{C}, 63.80 ; \mathrm{H}, 5.70 ; \mathrm{N}, 8.15 ; \mathrm{S}, 12.55$. trans-2-Tosylimino-3-benzyl-4-dimethylamino-5-phenylthiazolidine (12) was obtained in 73% by partial evaporation and cooling of the reaction mixture: mp $161-162^{\circ}\left(\mathrm{CCl}_{4}\right)$; ir (KBr) $1530(\mathrm{C}=\mathrm{N})$, 1300 , and $1150 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right)$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.13(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.6-3.2$ (m, 12 H , aromatic protons), 4.72 (d,

1 H , benzyl proton, $J=14.5 \mathrm{~Hz}), 5.55(\mathrm{~d}, 1 \mathrm{H}$, ring proton, $J=$ $2.5 \mathrm{~Hz}), 5.68(\mathrm{~d}, 1 \mathrm{H}$, ring proton, $J=2.5 \mathrm{~Hz}), 5.81(\mathrm{~d}, 1 \mathrm{H}$, benzyl proton, $J=14.5 \mathrm{~Hz}), 7.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, and $7.69\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right)$; mass spectrum m / e (\%) 465 (3, M•+), 421 ($8, \mathrm{M}^{+}+-\mathrm{NMe}_{2}, \mathrm{~m}^{*}$ at 381.2), 420 (34, M. ${ }^{+}-\mathrm{HNMe}_{2}, \mathrm{~m}^{*}$ at 379.3), 179 (6, $\left.\mathrm{PhCHCH}\left(\mathrm{NMe}_{2}\right) \mathrm{S} \cdot{ }^{+}\right), 91$ (100).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (465): $\mathrm{C}, 64.51 ; \mathrm{H}, 5.80 ; \mathrm{N}$, $9.03 ; \mathrm{O}, 6.88 ; \mathrm{S}, 13.76$. Found: C, $64.40 ; \mathrm{H}, 5.80 ; \mathrm{N}, 8.90$; O, 6.75; S, 13.50.

2-Tosylimino-3-benzyl-4-dimethylamino-5,5-dimethylthiazolidine (13) was obtained in 55% by evaporation of the solvent and treatment of the residual oil with ether (20 ml), followed by cooling: mp 132-133 ${ }^{\circ}$ (MeOH); ir (KBr) $1530(\mathrm{C}=\mathrm{N}), 1295,1285,1150$, and $1140 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.18(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.60-3.00(\mathrm{~m}, 7 \mathrm{H}$, aromatic protons), $4.55(\mathrm{~d}, 1 \mathrm{H}$, benzyl proton, $J=14.5 \mathrm{~Hz}$), 6.08 (d, 1 H , benzyl proton, $J=14.5 \mathrm{~Hz}$), 6.12 ($\mathrm{s}, 1 \mathrm{H}$, ring proton), $7.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right.$), $7.60(\mathrm{~s}, 3 \mathrm{H}$, aromatic $\left.\mathrm{CH}_{3}\right), 8.66\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right)$, and $8.77\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right)$; mass spectrum $m / e(\%) 417\left(3, \mathrm{M} \cdot+\right.$), 373 ($64, \mathrm{M} \cdot{ }^{+}-\mathrm{NMe}_{2}, \mathrm{~m}^{*}$ at 333.6), 131 (2.5, $\mathrm{Me}_{2} \mathrm{NCHCMe} \mathrm{N}_{2} \mathbf{S}^{+}$), 91 (100).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (417): $\mathrm{C}, 60.43 ; \mathrm{H}, 6.47$; N , 10.07 ; S, 15.35. Found: C, 60.35; H, 6.60 ; N, $9.90 ; \mathrm{S}, 15.30$.

Thiazoline 17 was formed together with 15 and 19 in the reaction of 4 e with morpholinocyclohexene. After complete reaction (2 hr), the solvent was cooled and 19 was isolated by filtration in 16% yield: mp 193-194 ${ }^{\circ}\left(\mathrm{CCl}_{4}-\mathrm{CHCl}_{3}\right)$; ir (KBr) $3340(\mathrm{~N}-\mathrm{H}), 1530$ $(\mathrm{C}=\mathrm{N}), 1265$, and $1135 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.37(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.58-3.00(\mathrm{~m}, 7 \mathrm{H}$, aromatic protons), 2.90 (br, $1 \mathrm{H}, \mathrm{NH}$), $5.75\left(\mathrm{~d}, 2 \mathrm{H}\right.$, benzyl CH_{2}), 6.2-6.8 (m, 8 H , morpholino), and 7.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) ; mass spectrum $m / e(\%) 373(1, \mathrm{M} \cdot+$), 218 (40, M.+ - Tos), $106\left(100, \mathrm{PhCH}_{2} \mathrm{NH}^{+}\right), 91\left(100, \mathrm{C}_{7} \mathrm{H}_{7}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (373): C, 61.12; H, 6.16; N, 11.26; S, 8.58. Found: C, 61.40 ; H, 6.30 ; N, 11.15 ; S, 8.50.

The mother liquor was evaporated to dryness and the residual oil was dissolved in DMF (100 ml) and treated with a 2 N HCl solution (20 ml) at room temperature for 4 hr . The reaction mixture was poored into ice-water; the precipitate (17) was collected, washed with water, and dried, yield 79% : mp $180-182^{\circ}(\mathrm{MeOH})$; ir $(\mathrm{KBr}) 1500(\mathrm{C}=\mathrm{N}), 1300$, and $1145 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau$ 2.23 (d, 2 H , ortho aromatic protons), $2.67-3.15$ (m, 7 H , aromatic protons), 4.89 (s, 2 H , benzyl CH_{2}), $7.40-7.85$ and $8.08-8.45$ (two m, 8 H , cyclohexene protons), and $7.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; mass spectrum $m / e(\%) 398\left(10, \mathrm{M}^{+}\right), 243\left(49, \mathrm{M}^{+}+\right.$Tos), $91\left(100, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (398): C, 63.32; H, 5.53; N , 7.03 ; S, 16.08. Found: C, $63.20 ; \mathrm{H}, 5.60 ; \mathrm{N}, 6.90 ; \mathrm{S}, 15.80$

2-Tosylimino-3-benzyl-4-phenyl-5-methylthiazoline (18) was formed together with 16 and 19 in the reaction of $4 e$ with α-morph-olino- β-methylstyrene. After complete reaction (2 hr), the insoluble guanidine 19 was isolated (21%). The solvent was removed from the mother liquor and the residue was dissolved in DMF (50 ml) and treated with a $2 N \mathrm{HCl}$ solution (20 ml) at room temperature for 1 hr . The mixture was then poored into ice-water and the precipitate (13) was collected and washed with water and ether, yield 48% : mp $167-168^{\circ}(\mathrm{MeOH})$; ir (KBr) $1500(\mathrm{C}=\mathrm{N}), 1285$ and $1155 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.21(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.50-3.50\left(\mathrm{~m}, 12 \mathrm{H}\right.$, aromatic protons) $5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.61 (s, 3 H , tosyl CH_{3}), and 8.00 (s. 3 H , ring CH_{3}); mass spectrum $m / e(\%) 434\left(28, \mathrm{M}^{+}+\right.$), 279 ($68, \mathrm{M}^{+}+-\mathrm{Tos}$), $91\left(100, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right.$).

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (434): C, 66.36; H, 5.07; N, $6.45 ; \mathrm{S}, 14.75$. Found: C, $66.50 ; \mathrm{H}, 5.10 ; \mathrm{N}, 6.30 ; \mathrm{S}, 14.90$.
Decomposition of 4 e in the Presence of Ynamines. Equimolar amounts (0.01 mol) of 4 e and N, N-diethylaminopropyne were heated at 60° in benzene (35 ml) for 4 hr . Nmr analysis of the reaction mixture showed the presence of thiazoline 20 in $50-60 \%$ yield. Removal of the solvent and crystallization of the residue from ether furnished pure 20 in 19% : mp 118-119 ${ }^{\circ}(\mathrm{MeOH})$; ir (KBr) 1500 $(\mathrm{C}=\mathrm{N}), 1300$, and $1150 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.29(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.67-3.20$ ($\mathrm{m}, 7 \mathrm{H}$, aromatic protons), 4.90 ($\mathrm{s}, 2 \mathrm{H}$, benzyl CH_{2}), 7.13 ($\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.63 (s, 3 H , tosyl
CH_{3}), $7.85\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ring $\left.\mathrm{CH}_{3}\right)$, and $9.14\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; mass spectrum $m / e(\%) 429(8, \mathrm{M} \cdot+), 338\left(4, \mathrm{M} \cdot+-\mathrm{C}_{7} \mathrm{H}_{7}\right), 274$ (23, M.+ - Tos), 91 (100, $\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (429): C, 61.54; H, 6.29 ; N, 9.79 ; S, 14.92. Found: C, 61.60; H, 6.45 ; N, $9.60 ;$ S, 15.15 .

Decomposition of 4 e in the Presence of Acylphosphoranes. Compound $4 \mathrm{e}(0.01 \mathrm{~mol})$ was allowed to decompose at 60° in the presence of an equimolar amount of acylphosphorane in dry CCl_{4} (25 ml) until N_{2} evolution ceased. The reaction mixture was then cooled to room temperature or below in order to crystallize the cycloadducts $22-24$. A second crop of cycloadduct may eventually be obtained by evaporating the mother liquor, dissolving the residue in methanol, and cooling.
2-Tosylimino-3-benzyl-4-methylthiazoline (22) was obtained in 60% yield after crystallization from MeOH : mp $119-121^{\circ}$; ir (KBr) $3100(=\mathrm{CH}), 1485(\mathrm{C}=\mathrm{N}), 1285$, and $1145 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right)$; nmr (DMSO- $d_{6}, 50^{\circ}$, HMDS as standard) $\tau 2.45$ (d, 2 H , aromatic protons), $2.7-3.2$ (m, 7 H , aromatic protons), $3.55(1 \mathrm{H}$, ring CH), $4.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.75\left(\mathrm{~s}, 3 \mathrm{H}\right.$, tosyl $\left.\mathrm{CH}_{3}\right)$, and $7.95(\mathrm{~d}, 3 \mathrm{H}$, ring CH_{3}); mass spectrum $m / e(\%) 358\left(24, \mathrm{M}^{+}+\right.$), $203\left(100, \mathrm{M}^{+}+\right.$Tos).
2-Tosylimino-3-benzyl-4-phenylthiazoline (23) was obtained in 95% yield: mp $167.5-169.5^{\circ}(\mathrm{MeOH})$; ir (KBr) $3100(=\mathrm{CH})$, $1490(\mathrm{C}=\mathrm{N})$, and $1140 \mathrm{~cm}^{-1}\left(\mathrm{SO}_{2}\right) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.25(\mathrm{~d}, 2 \mathrm{H}$, ortho aromatic protons), $2.5-3.7(\mathrm{~m}, 12 \mathrm{H}$, aromatic protons), 3.70 ($\mathrm{s}, 1 \mathrm{H}$, ring CH), $4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $7.62\left(\mathrm{~s}, 3 \mathrm{H}\right.$, tosyl $\left.\mathrm{CH}_{3}\right)$; mass spectrum $m / e(\%) 420\left(27, \mathrm{M}^{+}\right), 265\left(62, \mathrm{M}^{+}+-\right.$Tos), 91 (100).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (420): C, 65.71; $\mathrm{H}, 4.76$; N , $6.67 ; \mathrm{O}, 7.62 ; \mathrm{S}, 15.24$. Found: $\mathrm{C}, 65.85 ; \mathrm{H}, 4.80 ; \mathrm{N}, 6.65$; O, 7.70; S, 15.15.

Compound 23 was also obtained when $11(1 \mathrm{~g})$ was dissolved in DMF (30 ml) and treated with a $2 N \mathrm{HCl}$ solution (10 ml) for 15 min. The mixture was collected, washed with water, and dried; yield 90%.

2-Tosylimino-3-benzyl-4-(p-nitrophenyl)thiazoline (24) was obtained in 65% yield after crystallization from MeOH: mp 196$198^{\circ}$; ir (KBr) 1500-1530 (C=N, NO_{2}), 1350 and $1150 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right.$ and SO_{2}); nmr $\left(\mathrm{CDCl}_{3}\right) \tau 1.7-3.4(\mathrm{~m}, 13 \mathrm{H}$, aromatic protons), 3.5 ($\mathrm{s}, 1 \mathrm{H}$, ring CH), $4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $7.6\left(\mathrm{~s}, 3 \mathrm{H}\right.$, tosyl $\left.\mathrm{CH}_{3}\right)$; mass spectrum m / e (\%) 465 ($8, \mathrm{M} \cdot+$), 310 ($14, \mathrm{M} \cdot+-$ Tos), 91 ($100, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}$).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ (465): C, $59.35 ; \mathrm{H}, 4.09 ; \mathrm{N}$, $9.09 ; \mathrm{S}, 13.76$. Found: $\mathrm{C}, 59.40 ; \mathrm{H}, 4.10 ; \mathrm{N}, 9.15 ; \mathrm{S}, 13.75$.

Independent Synthesis of $\mathbf{2 2}$ and 23. An acetone-water solution ($50: 50 \mathrm{ml}$) of benzyl isothiocyanate (0.1 mol), tosylamide (0.1 mol), and $\mathrm{NaOH}(4.5 \mathrm{~g})$ was refluxed for 1 hr and then stirred at room temperature for another 3 days. The reaction mixture was diluted with water (100 ml) and acidified with a 5 N solution of HCl . The precipitate was filtered, washed several times with water, dried, and crystallized from $\mathrm{MeOH}-$ ether to give 25 in 53% yield: mp 163$165^{\circ}$ (lit. ${ }^{18} 164-165^{\circ}$); ir (KBr) $3330(\mathrm{NH}), 3200-2600$ (br), 1545 , 1390, 1345, 1175 , and $1135 \mathrm{~cm}^{-1}$; nmr (100 MHz , DMSO- d_{6}, HMDS as standard) $\tau-1.55$ (br, $1 \mathrm{H}, \mathrm{N} H \mathrm{SO}_{2}$), $1.12(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{NHCH} 2), 2.17$ (d, 2 H , ortho aromatic protons), 2.58 (d, 2 H , ortho aromatic protons), $2.6-2.9$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic protons), 5.28 (d, 2 $\mathrm{H}, \mathrm{CH}_{2}$), and $7.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; mass spectrum $m / e(\%) 320(2.5$, $\mathrm{M} \cdot+)$. Compound $25(0.01 \mathrm{~mol})$ was treated with an equimolar amount of bromoacetone or phenacyl bromide in $\mathrm{EtOH}(50 \mathrm{ml})$ at reflux temperature for 1.5 hr . Upon cooling the mixture to room temperature, the cycloadducts 22 and $\mathbf{2 3}$ crystallized out in quantitative yield. They were identical in all respects with the products obtained from $4 e$ and the phosphorus ylides.

Acknowledgment. The authors are indebted to the IWONL for a Postdoctoral Fellowship (E. V. L.) and to the Ministry of scientific programmation for financial support.
(18) S. Onishi, Yakugaku Zasshi, 79, 559 (1959); Chem. Abstr., 53, $21661 i(1959)$.

[^0]: (1) See, for instance, E. Lieber, C. N. Pillai, and R. D. Hites, Can. J. Chem., 35, 832 (1957); E. Lieber and J. Ramachandran, ibid., 37, 101 (1959), and references cited therein.
 (2) P. Dunn and D. Oldfield, Aust. J. Chem., 24, 645 (1971).
 (3) P. Kreutzer, C. Weis, H. Boehme, T. Kemmerich, W. Beck, C. Spencer, and R. Mason, Z. Naturforsch. B, 27, 745 (1972).

[^1]: (12) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York, N. Y., 1972, pp 52-53.

[^2]: (14) P. Ykman, G. L'abbé, and G. Smets, Tetrahedron Lett., 5225 (1970); Tetrahedron, 27, 845, 5623 (1971); J. Indian Chem. Soc., 49, 1245 (1972); P. Ykman, G. Mathys, G. L'abbé, and G. Smets, J. Org. Chem., 37, 3213 (1972); G. L'abbé, J.-M. Borsus, and G. Smets, Chem. Ind. (London), 1491 (1971).

[^3]: (16) (a) R. B. Woodward and R. Hoffmann, Angew. Chem., 81, 797 (1969); Angew. Chem., Int. Ed. Engl., 8, 781 (1969). (b) For a discussion of cycloaddition reactions of cyclopropanones, the closest analogs known to our system, see for instance R. Hoffmann, J. Amer. Chem. Soc., 90,1475 (1968); N. J. Turro, S. S. Edelson, J. R. Williams, T. R. Darling, and W, B. Hammond, ibid., 91, 2283 (1969).
 (17) K. Hartke, Arch. Pharm. (Weinheim), 299, 174 (1966).

